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Abstract 

A convex polygon in R2, or a convex polyhedron in i?3, will be called a tile. A connected set 
V of tiles is called a partial tiling if the intersection of any two of the tiles is either empty, or 
is a vertex or edge (in R3: or face) of both. V is called strongly normal (SN) if, for any partial 
tiling V C V and any tile P € V, the neighborhood N(P, V) of P (the union of the tiles 
of V that intersect P) is simply connected. Let V be SN, and let N*(P,V) be the excluded 
neighborhood of P in V (i.e., the union of the tiles of V, other than P itself, that intersect 
P). We call P simple in V if N(P,V) and N*(P,V) are topologically equivalent. This paper 
presents methods of determining, for an SN partial tiling P, whether a tile P e V is simple, 
and if not, of counting the numbers of components and holes (in R3: components, tunnels 
and cavities) in N*(P,V). 
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1    Introduction 

In re-dimensional Euclidean space Rn, a convex hyperpolyhedron P is a bounded set which is 
the intersection of a finite number of closed half-spaces and which has a nonempty interior. 
Let Hi, • • •, Hm be the hyperplanes ((re — l)-dimensional subspaces of Rn) that bound the 
half-spaces whose intersection is P. It can be shown that m must be at least re + 1. Each 
nonempty P f) Hi is called an (re — l)-dimensional hyperface of P. An (re — l)-dimensional 
hyperface of P is a convex hyperpolyhedron in i?n_1; its (re — 2)-dimensional hyperfaces 
are also called (re — 2)-dimensional hyperfaces of P, and so on. For re — d = 2,1, or 0, an 
(re — d)-dimensional hyperface of P is called a face, an edge, or a vertex of P, respectively. It 
can be shown that a face is a convex planar polygon, an edge is a line segment, and a vertex 
is a point. 

Let V be a nonempty set of convex hyperpolyhedra whose union is connected. We call 
V normal if, for all P, Q € V, P D Q is either empty or an (n — d)-dimensional hyperface of 
P and of Q, for some d. [For example, when n = 2, the hyperpolyhedra are polygons; if a 
set of convex polygons is normal, the intersection of any two of them is an edge, a vertex, 
or empty; their intersection cannot have an interior point, and if it is contained in an edge, 
it must either be the entire edge or one of the vertices of the edge.] If V is normal and its 
union is all of Rn, it is called a tessellation or tiling of Rn; if its union is not all of Rn it is 
called a partial tiling of Rn. In either case, the P's in V are called tiles. It is not hard to see 
that any partial tiling is a subset of tiling, because the space not occupied by the tiles can 
be partitioned into convex polyhedra whose pairwise intersections are hyperfaces. 

The neighborhood N(P, V) of P in V is the union of all Q € V that intersect P (including 
P itself). The excluded neighborhood N*(P,V) is defined similarly, except that Q is not 
allowed to be P itself. 

V is called strongly normal (SN) if it is normal and, for all P, Pi,..., Pm (m > 1) € V, 
if each P; intersects P and I — Pi C\... fl Pm is nonempty, then I intersects P. Note that 
both normality and strong normality are hereditary: If they hold for V, they hold for any 
V C V. It was observed in [1] that the regular square and hexagonal tessellations of R2 are 
SN, but the regular triangular tessellation is not. 

^From now on we assume that re = 2 or 3, so that the P's are convex polygons or 
polyhedra. In [1] we showed that V is an SN (partial) tiling of R2 or R3 by convex polygons 
or polyhedra iff, for any V C V and any P € V, N(P, V) is simply connected. 

If V is SN and N'(P,V) is simply connected, P is called simple in V. When P is not 
simple, N*(P,V) may be disconnected, or it may have holes (in 2D), tunnels or cavities (in 
3D). In this paper we present methods of determining whether P is simple, and if not, of 
counting the numbers of connected components, holes, tunnels, and cavities (as appropriate) 
in N*(P,V). From now on we assume that V is SN. To avoid the need for awkward formu- 
lations or artificial terminology, we treat the two- and three-dimensional cases separately (in 
Sections 2 and 3, respectively), even though their treatments are to a great extent analogous. 



2    The two-dimensional case 

2.1    Numbers of components and holes 

The interior of a polygon P, denoted by interior(P), is denned as P — (the union of the 
edges of P). If e is an edge, we define interior(e) as e — (the vertices of e). It will be 
convenient, in what follows, to define interior(v) as v if v is a vertex. 

A vertex or edge s of V is called shared if there exist two polygons Pi,Pj G V such that 
Pi D Pj — s. Otherwise, s is called bare. An edge that belongs two polygons must be shared, 
but a bare vertex v can belong to two polygons if they intersect in an edge containing v. 

The boundary of P, denoted by B(P), is the union of all edges of P. The set B(P) — 
N*(P,V), denoted by Bb(P,V), is called the bare boundary of P. The union of the shared 
vertices and edges of P is called the shared boundary of P and is denoted by BS(P,V). It is 
not hard to see that for all P, Bb(P,V) and B3(P,V) are disjoint and their union is B(P). 
Note that Bb(Pi V) is not the union of the bare vertices and edges of P; a vertex of a shared 
edge may be bare, and a vertex of a bare edge may be shared. An edge of P is shared iff one 
of the polygons sharing it is P; but a vertex of P may be shared by two polygons neither of 
which is P. 

If an edge of P is bare, its interior (at least) is contained in Bb(P,V); and it is not hard 
to see that if every edge of P is shared, Bb{P,V) must be empty. This proves 

Lemma 1 Bb(P,V) is non-empty if and only if P has a bare edge. 

The union of all the polygons in V will be denoted by U(V). The numbers of components 
and holes in U[V) are its Oth and 1st Betti numbers, respectively; its higher Betti numbers 
are zero. As shown in [1], because of SN, N(P,V) always consists of a single connected 
component and has no holes. In this section we will determine the numbers of components 
and holes in N*(P,V). We first establish a useful lemma: 

Lemma 2 The numbers of components and holes in N*(P,V) are, respectively, the same as 
the numbers of components and holes in BS(P,V). 

Proof: Let disc(A,p) denote the disc with radius A and center p (p € R2)- For every 
point p E N(P, V) — P there exists a finite value d such that for all A < d, disc(A, p) Pi 
N{P,V) = disc(A,p) n N*(P,V). Now P and N(P,V) are both simply connected and 
P C N(P, V). Therefore, there exists a Betti number preserving transformation (a deforma- 
tion retract) from N(P, V) to P. This transformation basically removes N(P, V) — P from 
N(P,V). The transformation is also Betti number preserving for N*(P,V). This is true be- 
cause: (a) The transformation removes N(P, V)—P; (b) for every point p € N(P, V)—P there 
exists a finite value d such that for all A < d, disc(A,p) f) N(P, V) = disc(A,p) f\ N*(P, V); 
(c) both N(P, V) and P are simply connected and thus the transformation is Betti number 
preserving throughout (i.e. it is not the case that at a certain step it removes a hole and at 
some other step it creates a hole). Since the transformation removes N(P,V) — P, it trans- 
forms N*{P,V) to N*(P,V)-(N{P,V)-P) = N*(P,V)f\P = N*(P,V)nB(P) = BS{P,V). 



Therefore the numbers of components and holes in N*(P, V) are the same as those numbers 
mBs(P,V). D 

Now BS(P,V) is a subset of B(P) and B(P) is topologically equivalent to a circle, which 
has exactly one hole. Therefore BS(P,V) can have at most one hole, and this occurs only 
when BS(P,V) is topologically equivalent to a circle. In other words, BS(P,V) has at most 
one hole, and this occurs only when BS(P,V) = B(P), i.e. Bb(P,V) is empty. Based on this 
discussion we have 

Proposition 1 N*(P,V) can have at most one hole, and this occurs only when Bf,(P,V) is 
empty. 

^From Proposition 1 and Lemma 1 we have 

Proposition 2 N*(P,V) can have at most one hole, and this occurs if and only if all edges 
of P are shared. 

2.2    Simple polygons and measures of topological change 

A polygon P is simple in V if and only if deleting P from V does not change the topology 
of U{V). Evidently, deleting P changes the topology of U{V) if and only if it changes the 
topology of its neighborhood (i.e. the union of the polygons that intersect it). Thus P is 
simple if and only if the numbers of components and holes are the same in N(P, V) and in 
N*(P,V). 

As shown in [1], since V is SN, the numbers of components and holes in N(P,V) are 
always 1 and 0 respectively. Therefore P is simple if and only if N*(P,V) has exactly one 
component and has no holes. 

Criteria for the existence of holes in N*(P,V) were given in Section 2.1. These criteria 
give us the following characterization of a simple polygon: 

Theorem 1 P is simple if and only if it satisfies the following two conditions: 

1. BS(P,V) has exactly one component. 

2. P has a bare edge. 

In general, we can define P to be simple if N(P,V) can be continuously contracted into 
N*(P,V), or equivalently, if P can be continuously contracted into BS(P,V). It can be 
shown that P is simple iff N*(P,V) has the same numbers of components and holes as 
N(P,V), and that Theorem 1 holds even if V is normal (but not necessarily SN). 

If a polygon is non-simple, its deletion changes the topology of U{V), but this tells 
us nothing about the nature of the change. The following theorem is a straightforward 
consequence of the discussion in Section 2.1. 

Theorem 2  When P is deleted, 



1. The change in the number of components is one less than the number of components 
ofB.(P,V). 

2. The change in the number of holes is one when P has no bare edge and zero otherwise. 

Let the configuration of an edge or vertex refer to whether it is shaxed or bare. By 
Theorems 1 and 2, the changes in the numbers of components and holes when P is deleted 
(and hence the simplicity of P) are determined if we know the configurations of the vertices 
and edges of P. [Note that this is not true if V is not SN (even if it is normal). For example, 
the configurations of the vertices and edges of the triangle P in Figures la and lb are the 
same, but in Figure la N*(P,V) has only one component, while in Figure lb it has two 
components.] 

An alternative formulation of Theorems 1 and 2 can be obtained by regarding the given 
partial tiling V as a subset of a tiling V, and distinguishing the polygons Q in N*(P, V) that 
share an edge with P from those that only share a vertex with P. The former polygons will be 
called /3-adjacent to P, while all the polygons in N*(P, V) will be called a-adjacent to P. [As 
usual, the transitive closure of x-adjacency (where x = a or ß) is called ^-connectedness.] 
We denote the set of polygons in V that are a-adjacent to P by N*(P), and the set of 
polygons in V — V that are ^-adjacent to P by Nß{P). In terms of this notation, we can 
restate Theorems 1 and 2 as follows: 

Theorem 1'    P is simple if and only if it satisfies the following two conditions: 

1. N*(P) is nonempty and a-connected. 

2. Nß(P) is nonempty. 

Theorem 2'    When P is deleted, 

1. The change in the number of components is one less than the number of a-components 
in N;(P). 

2. The change in the number of holes is one when Nß(P) is nonempty, and zero otherwise. 

2.3    Efficient computation 

As we have seen, the numbers of components and holes in N(P,P) are always 1 and 0 
respectively. Thus the numbers (,{P,V) and 6(P,V) of components and holes in N*(P,V) 
define local measures of topological change when P is deleted. Let simple(P,V) be a pred- 
icate which has the value 1 when P is simple in V and 0 otherwise. £(P, P), 8(P,V) and 
simple(P, V) will be referred to as the local topological parameters of P. In this section we 
develop an efficient approach to computing these parameters. 

Proposition 3 // an edge e of P is shared then £(P, V) is independent of the configurations 
of the vertices v C e. 



Proof: Let V contain a polygon Pv such that Pv D P = v. To establish the proposition we 
shall show that the numbers of components of N*(P,V) and N*(P,V — {Pv}) are the same. 
If this is not true then one of the following two cases must occur: 
Case 1: Pv is an isolated polygon in N*(P, V), so that the number of components of N*(P, V) 
is greater than that of N*(P, V - {Pv}). 
Case 2: Two or more components of JV*(P, V - {Pv}) are adjacent to P„, so that the number 
of components of N*{P,V - {Pv}) is greater than that of N*(P,V). 

Since e is shared, there exists a polygon Pe C N*(P,V) such that Pef)P = e. Now Pvf)P = v 
implies that v C Pv. Also v C e C Pe and thus v C Pe (~) Pv, i.e. Pe C\ Pv ^ 0. Hence Pv is 
adjacent to Pe and Case 1 never occurs. As regards Case 2, suppose there exist two polygons 
PuP* C N*(P,V - {Pv}) that belong to different components of N*(P,V - {Pv}) and are 
adjacent to Pv. Pr and Pv are adjacent to P and Pi n Pv ^ 0; thus by SN, (Pl n P„) n P ^ 0. 
Obviously, (Pi D P„) n P C Pv D P = u and thus Px n Pv n P C v C e C Pe, which implies 
that Pi Pl Pe ^ 0; hence Pi and Pe are adjacent. In the same way, it can be shown that P2 

and Pe are adjacent. Therefore Pi U Pe U P2 is connected, i.e. Pi and P2 belong to the same 
component of N*(P,V — {Pv}), contradiction. Thus Case 2 cannot occur either. □ 

By Proposition 2, <5(P, V) depends on the configurations of the edges of P, and is inde- 
pendent of the configurations of the vertices of P. By Proposition 3, £(P, V) is independent 
of the configurations of the vertices belonging to shared edges of P. Based on this, we have 
the following definition and Proposition: 

Definition 1 A vertex v of P is called trapped if it belongs to a shared edge of P; otherwise, 
it is called free. 

Proposition 4 £(P,V) and S(P,V) are independent of the configurations of the trapped 
vertices of P. 

Since simple(P,V) depends on £(P,V) and 8{P,V) (specifically, simple(P,V) is 1 if and 
only if £(P,V), b~(P,V) are 1 and 0, respectively), we also have 

Corollary 1 The predicate simple (P, V) is independent of the configurations of the trapped 
vertices of P. 

Lemma 3 Each free, shared vertex of P contributes one component to N*(P,V). 

Proof: Let v be a free, shared vertex of P. Let Pi,p2, • • • ,Pn be the polygons of V such 
that Pi C\P = v. [Since v is shared, it is in at least one polygon P' other than P. Now P'C\P 
cannot be an edge, since v is free; hence P' f) P = v.] Evidently, the p's are connected. We 
show that no other polygon in N(P, V) meets any of the P;'s. In fact, suppose P' is not one 
of the P's (so that P' n P ^ «), but F meets some Pt, i.e. P' D P ^ 0. Since v is free, both 
of the edges of P that meet at v are bare; hence (P' Pl P;) (~l P = 0. But this contradicts the 
fact that V is SN. □ 

Using these results, we now describe a simple method of computing the local topological 
parameters £(P,V), S(P,V), and simple(P,V). We treat three cases, depending on the 
presence of shared edges in P. 



Case 1: All edges of P axe shared. 
In this case all vertices are trapped and no more computation is needed. The local topological 
parameters have the following values: 

£(P,P) = 1,   6(P,V) = 1,   simple{P,V) = 0. 

Case 2: Some, but not all, edges of P are shared. 
In this case 6(P,V) is always zero, but £(P,V) (and therefore simple(P,V)) depends on 
the configurations of the edges and free vertices (if any) of P. We can compute £(P, V) by 
examining the successive edges and counting "1" for each pair of consecutive edges one of 
which is bare and the other shared, and counting "1" for each shared vertex which is the 
intersection of two bare edges. Finally, simple(P,V) is 1 if £(P,"P) is 1, and is 0 otherwise. 

Case 3: No edge of P is shared. 
In this case all vertices of P are free. The number of holes 6(P,V) is always zero; the 
number of components £(P,V) is exactly the same as the number of shared vertices; and 
simple(P, V) is 1 when exactly one vertex is shared, and is 0 otherwise. 

3    The three-dimensional case 

3.1    Numbers of components, tunnels and cavities 

The interior of a polyhedron P, denoted by interior(P), is defined as P — (the union of the 
faces of P). If / is a face, we define interior(f) as f — (the edges of /). The interior of an 
edge or a vertex is defined as in the two-dimensional case. 

A vertex, edge, or face 5 of V is called shared if there exist two polyhedra P,, Pj € V such 
that Pi n Pj = s. Otherwise, s is called bare. A face that belongs to two polyhedra must be 
shared, but a bare edge (respectively, vertex) x can belong to two polyhedra if they intersect 
in a face (respectively, face or edge) containing x. 

The boundary of P, denoted by B(P), is the union of all faces of P. The set B(P) — 
N*(P,V), denoted by Bb{P,V), is called the bare boundary of P. The union of the shared 
vertices, edges, and faces of P is called the shared boundary of P and is denoted by BS(P, V). 
It is not hard to see that for all P, Bb{P,V) and BS(P,V) are disjoint and their union is 
B(P). Note that Bb(P,V) is not the union of the bare vertices, edges, and faces of P; a 
vertex of a shared face or shared edge may be bare; an edge of a shared face may be bare; a 
vertex of a bare edge or bare face may be shared; and an edge of a bare face may be shared. 
A face of P is shared iff one of the polyhedra sharing it is P; but a vertex or edge of P may 
be shared by two polyhedra neither of which is P. 

If a face of P is bare, its interior (at least) is contained in Bb(P,V); and it is not hard to 
see that if every face of P is shared, Bb(P,V) must be empty. This proves 

Lemma 4 Bb{P,P) is non-empty if and only if P has a bare face. 

The union of all the polyhedra in V will be denoted by U{V). The numbers of components, 
tunnels and cavities in U{V) are its 0th, 1st and 2nd Betti numbers, respectively. As shown 



in [1], because of SN, N{P,V) always consists of a single connected component without 
tunnels and cavities. In this section we will determine the numbers of components, tunnels 
and cavities in N*(P,V). We first establish a useful lemma: 

Lemma 5 The numbers of components, tunnels and cavities in N*(P,V) are the same as 
the numbers of components, tunnels and cavities in BS(P,V), respectively. 

Proof: Analogous to that of Lemma 2, using a ball instead of a disc. □ 
BS(P, V) is a subset of B(P), and B(P) is topologically equivalent to a sphere, which has 

exactly one cavity. Therefore BS(P,V) can have at most one cavity, and this occurs only 
when BS(P,V) is topologically equivalent to a sphere. In other words, BS(P,V) has at most 
one cavity, and this occurs only when BS{P,V) = B(P), i.e. Bb{P,V) is empty. Based on 
this discussion we have 

Proposition 5 N*(P,V) can have at most one cavity, and this occurs only when Bb(P,V) 
is empty. 

^From Proposition 5 and Lemma 4 we have 

Proposition 6 N*(P,V) can have at most one cavity, and this occurs if and only if all faces 
of P are shared. 

The remainder of this section deals with methods of determining the number of tunnels 
in N*(P,V). Let W be a connected subset of the boundary B of a convex set in R3 — for 
example, a connected region on the surface of a convex polyhedron. W has a tunnel if and 
only if B — W is not connected. In fact, W has n > 0 tunnels if and only if B — W has n + 1 
components. Now P is a convex set in R3, B(P) is the boundary of P, and BS(P, V) is a subset 
of B(P). Also Bb{P,V) = B(P) - N*(P,V) = B(P) - N*(P,V) n B(P) = B(P) - BS(P,V). 
Thus BS(P, V) has no tunnel when Bb(P, V) is connected or empty; otherwise, the number 
of tunnels in BS{P, V) is one less than the number of components in Bb(P, V). According to 
Lemma 5, the number of tunnels in N*(P, V) is equal to the number in BS(P, V). Based on 
this discussion we have 

Proposition 7 N*(P,V) has no tunnel when Bb(P,V) is connected or empty; otherwise, 
the number of tunnels in N*(P,V) is one less than the number of components in Bb(P,V). 

If / is a bare face of P, interior(f) must be contained in #&(P, V), and since interior(f) 
is connected, it must be a subset of some component of Bb(Pi V). Conversely, we have 

Lemma 6 Every component of Bb(P,V) contains interior(f) for some bare face f of P. 

Proof: Suppose component c of Bb(P,V) does not contain the interior of any bare face of 
P. Then c must contain the interior of some bare edge or bare vertex. Suppose c contains 
interior(e) for some bare edge e. Let e be a subset of the face /. If / is bare, interior(f) 
is a subset of Bb(P,V). But interior(f) U interior(e) is connected, so must be contained 
in c, contradiction. On the other hand, if / is not bare, it is a subset of N*(P,V). Hence 
interior(e) C e C / C N*(P,V) cannot be a subset of Bb(P,V), contradiction. The proof if 
c contains the interior of some bare vertex is analogous. O 



Lemma 7 For any two bare faces /,/' of P, interior(f) and interior(f') are connected in 
Bb(P, V) if and only if there exists an alternating sequence f = /o, eo, f\, • • -, /,-, e;, /,+i, • • •, 
Cn-i, fn = /' of bare faces and bare edges of P such that e,- = /,- fl /,+i for 0 < i < n. 

Proof: Suppose first that there exists such an alternating sequence. Since e,- is a subset 
of both fi and /,+i, interior(fi) U interior{ei) U interior(fi+1) is connected, and obviously 
interior(fi) U interior{ti)\J interior(fi+i) is a subset of Bb(P,V). Thus interior(fi) and 
interior(fi+i) are connected in Bb{P,V) for 0 < i < n, and thus interior(f) = interior(fo) 
and interior(f') = interior(fn) are connected in Bb(P,V). Hence if there exists such an 
alternating sequence, interior(f) and interior(f') are connected in Bb(P,V). 

We shall show that, conversely, if interior(f) and interior(f') are connected in Bb(P,V), 
there exists such an alternating sequence. A curve connecting them in Bb(P,V) passes 
through the interiors of a sequence / = so, Si, • • •, sm = /' of bare simplexes of P. Since the 
interiors of the s,'s intersect Bb{P,V), by normality, it is not hard to see that they must be 
subsets of Bb{P, V); hence the s,'s are bare simplexes. Evidently interior(si) \Jinterior(si+i) 
must be connected for 0 < i < n, since the curve passes through the consecutive s;'s. Now 
the unions of the interiors of two faces, edges, or vertices of a polyhedron can never be 
connected. Thus, if we have a sequence Xo, xi, • • •, x* of faces and edges of a polyhedron in 
which interior{xi) U interior(xi+i) is connected for 0 < i < k, it must be an alternating 
sequence of faces and edges. Hence it remains only to show that we can replace every vertex 
in the sequence $o,S\, • •• ,sm by a sequence of bare faces and bare edges which satisfy the 
connectivity condition. 

A vertex in so, Si, • • •, sm must occur in one of the following four contexts (note that so 
and 5m are not vertices): 

(a) face, vertex, edge 
(b) edge, vertex, face 
(c) face, vertex, face 
(d) edge, vertex, edge. 

We show how to do the replacement in case (a); the other three cases can be treated 
similarly. Let a;, y, z be the face, the vertex and the edge, respectively. If z C x, i.e. the edge 
is a subset of the face, then interior(x)l)interior(z) is connected and we can replace x, y, z by 
x, z, which is an alternating sequence of bare faces and bare edges satisfying the connectivity 
condition. If z <f_ x then we proceed as follows: Since interior(x) U interior(y) U interior(z) 
is connected and y is a vertex, y must be a subset of both x and z. Since y is a vertex of 
P, at least three faces and at least three edges of P must meet at v; moreover, these n > 3 
faces and edges can be arranged in a sequence such that the ith edge is the intersection of 
the iih face and the (i + l)st face (modn). Let the faces be Xi,X2,• • ■ ,xn and the edges 
be zi,z2,-- • ,zn, where z,- = x; fl x,+imodn- Since x and z both meet y, x is one of the 
x,'s and z is one of the z;'s. Suppose x = Xj and z = Zk where j > k; we have already 
defined the replacement method for j = k, in which z is a subset of x, and the replacement 
method for j < k is similar to that for j > k. Since interior(y) is a subset of Bb(P,V), 
zi>a;25 • ••,!„ and zi,z2,- • ■ ,zn must all be bare simplexes. [Suppose this were not true, 
e.g. xi is not bare, so that it is a subset of N*(P,V). Then interior(y) = y C xi C 
N*{P,V); thus interiar(y) £ B(P) - N*(P,V), i.e. interior(y) £ Bb{P,V), contradiction.] 

8 



Now Zi — Xi Pi Zj+imodn implies that interior(xi) U interior(zi) U interior(xi+imodn) is 
connected; hence interior(xj) U interior(zj) Uinterior(XJ+I) • • • Uinterior(xk) U interior(zk) 
is connected. Therefore we can replace the sequence x,y,z by the alternating sequence x = 
Xj, ZJ, Xj+i, ■ ■ •, Xk, Zk of bare faces and bare edges which satisfies the connectivity condition. 

Definition 2 Let 0(P,V) be the set of bare faces of P. Two bare faces /,/' of P are 
called face-adjacent if the edge / fl /' is bare. Two bare faces /,/' of P are called face- 
connected if there exists a sequence f — /0, /i, • • •, fn — f in 0(P, V) such that /,- and /J+i 
are face-adjacent for 0 < i < n. A face component of 0(P,V) is the union of a maximal 
face-connected subset ofO(P,V). 

Theorem 3 The number of tunnels in N*(P,V) is zero when P has no bare face. Otherwise, 
the number of tunnels in N*(P,V) is one less than the number of face components in 0(P,V). 

Proof: This follows from Proposition 7 and Lemmas 6 and 7. □ 
The following corollaries are straightforward consequences of this theorem: 

Corollary 2 N*(P,V) contains no tunnel if and only if 0(P,V) is face-connected. 

Corollary 3 The number of tunnels in N*(P,V) is independent of whether the vertices of 
P are bare or shared. 

3.2    Simple polyhedra and measures of topological change 

A polyhedron P is simple in V if and only if deleting P from V does not change the topology 
of U(V). Evidently, deleting P changes the topology of U{V) if and only if it changes the 
topology of its neighborhood (i.e. the union of the polyhedra that intersect it). Thus P 
is simple if and only if the numbers of components, tunnels and cavities are the same in 
N{P,V) <md in N*(P,V). 

As shown in [1], since V is SN, the numbers of components, tunnels and cavities in 
N(P,V) are always 1, 0, and 0 respectively. Therefore P is simple if and only if N*(P,V) 
has exactly one component and has no tunnels or cavities. Criteria for the existence of 
tunnels and cavities in N*(P,V) were given in Section 3.1 (Corollary 2 and Proposition 6). 
These criteria gives us the following characterization of a simple polyhedron. 

Theorem 4 P is simple if and only if it satisfies the following two conditions: 

1. BS(P,V) has exactly one component. 

2. 0(P, V) is non-empty and face-connected. 



If we define "simple" in terms of contractability (see Section 2.2, just after Theorem 1), it can 
be shown that even if V is normal (but not necessarily SN), P is simple iff conditions 1 and 
2 of Theorem 4 hold. For such a P, N*(P, V) must have the same numbers of components, 
tunnels, and cavities as N(P,V); but these numbers can also be the same even if P is not 
simple (unlike the situation in two dimensions, where equality of the numbers of components 
and holes implies simplicity). 

If a polyhedron is non-simple, its deletion changes the topology of U(V), but this tells 
us nothing about the nature of the change. The following theorem is a straightforward 
consequence of the discussion in Section 3.1. 

Theorem 5  When P is deleted, 

1. The change in the number of components is one less than the number of components 
ofBs(P,V). 

2. The change in the number of tunnels is one less than the number of face components 
in 0(P, V) when 0(P, V) is non-empty, and zero otherwise. 

3. The change in the number of cavities is one when 0(P,V) is empty and zero otherwise. 

Let the configuration of a face, edge, or vertex refer to whether it is shared or bare. By 
Theorems 4 and 5, the changes in the numbers of components, tunnels, and cavities when 
P is deleted (and hence the simplicity of P) are determined if we know the configurations of 
the vertices, edges, and faces of P. [As in Section 2, this is not true if P is not SN, even if 
it is normal; examples can be easily given.] 

An alternative formulation of Theorems 4 and 5 can be obtained if we regard the given 
partial tiling V as a subset of a tiling V, and distinguish the polyhedra Q in N*(P,V) that 
share a face with P, those that share only an edge with P, and those that share only a 
vertex with P. All three types of Q's will be called a-adjacent to P; those that share a 
face or edge with P will be called ^-adjacent to P; and those that share a face with P will 
be called 7-adjacent to P. [a-, ß-, or 7-connectedness is the transitive closure of a-, ß-, or 
7-adjacency.] We denote the set of polyhedra in V that are a-adjacent to P by N*(P); the 
set of polyhedra in V — V that are /3-adjacent to P by Wß(P); and the set of polyhedra 
in V — V that are 7-adjacent to P by ~N*^(P). In terms of this notation, we can restate 
Theorems 4 and 5 as follows: 

Theorem 4'    P is simple if and only if it satisfies the following two conditions: 

1. N*(P) is nonempty and a-connected 

2. Exactly one ^-component of~N*ß{P) intersects ~N*{P). 

[Note that by condition 2, Ny(P) cannot be empty; hence P must have at least one bare 
face. Condition 2 then readily implies that the set of bare faces of P is face-connected.] 
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Theorem 5'    When P is deleted, 

1. The change in the number of components is one less than the number of a-components 
in N*a(P). 

2. The change in the number of tunnels is one less than the number of ^-components of 
H*ß(P) that intersect Ä^(P) when N^P) is nonempty, and zero otherwise. 

3. The change in the number of cavities is one when iV^(P) is empty, and zero otherwise. 

3.3    Efficient computation 

As we have seen, the numbers of components, tunnels and cavities in N(P,V) are always 1, 
0 and 0 respectively. Thus the numbers £(P, V), n(P, V) and S(P, V) of components, tunnels 
and cavities in N*(P,V) define local measures of topological change when P is deleted. Let 
simple(P, V) be a predicate which has the value 1 when P is simple and 0 otherwise. £(P, V), 
n(P,V),6(P,V) and simple(P,V) will be referred to as the local topological parameters of 
P. In this section we develop an efficient approach to computing these parameters. For 
brevity, in this section the configuration of a face, edge, or vertex refers to whether it is 
shared or bare. 

Proposition 8 If a face f of P is shared then £(P, V) is independent of the configurations 
of the vertices or edges s C /. 

Proof: Analogous to that of Proposition 3. n 

We can similarly prove 

Proposition 9 If an edge e of P is shared then £(P,P) is independent of the configurations 
of the vertices of e. 

Proposition 10 If a face f of P is shared then n(P,V) is independent of the configurations 
of the vertices or edges s C /. 

Proof: According to Corollary 3, n(P,V) is independent of the configurations of the ver- 
tices of P. To establish the proposition we shall show that r)(PfV) is independent of the 
configurations of all edges of /. Let e be such an edge and let Pe be a polyhedron (if any) 
such that PeC\ P = e. 

According to Theorem 3, n(P,V) is zero when 0(P,V) is empty, and otherwise it is 
one less than the number of face components of 0(P,P), so that n(P,V) is also zero when 
0(P, V) contains exactly one face. Thus to prove the proposition we need only show that 
7f(P,V) is independent of the configuration of e when 0(P,V) contains two or more faces. 
For this purpose we show that two faces of 0(P, V) are face-connected in N*(P, V - {Pe}) if 
and only if they are face-connected in N*(P, V). Suppose there were two faces x, y in 0(P, V) 
that were face-connected in N*(P,V) but not in N*(P,V- {Pe})- Then there must exist an 
alternating sequence of bare faces and bare edges of P, say x = /o, e0, /i, • • •, en-i,fn = y, 
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such that interior(fi) and interior(fi+1) are adjacent to interior(ei) for 0 < i < n, and 
ej = e for some j, 0 < j < n. Now for any edge z of a polyhedron <2, interior(z) is adjacent 
to the interiors of exactly two faces of Q. By assumption, face / is shared and e is an edge 
of /, so that interior(e) is adjacent to interior(f). Therefore P cannot have two bare faces 
whose interiors are adjacent to interior(e), contradiction. D 

By Proposition 6, 6(P,V) depends on the configurations of the faces of P, and is inde- 
pendent of the configurations of the edges and vertices of P. By Propositions 8 and 10, 
£(P,V) and rj(P,V) are independent of the configurations of the edges belonging to shared 
faces of T. According to Corollary 3, n(P,V) is independent of the configurations of the 
vertices of P. We also see from Propositions 8 and 9 that £(P, V) is independent of the 
configurations of the vertices belonging to shared faces or shared edges. Based on this, we 
have the following definition and Proposition: 

Definition 3 An edge e of P is called trapped if it belongs to a shared face of P; otherwise, 
it is called free. A vertex v of P is called trapped if it belongs to a shared face or edge of P; 
otherwise, it is called free. 

Proposition 11 £(P,V), il(P,V) and 8(P,V) are independent of the configurations of the 
trapped edges and vertices of P. 

Since simple(P,V) depends on Z{P,V), n{P,V) and 6{P,V) (specifically, simple(P,V) 
is 1 if and only if £{P,V), n{P,V) and 6(P,V) are 1, 0 and 0, respectively), we also have 

Corollary 4 The predicate simple(P, V) is independent of the configurations of the trapped 
edges and vertices of P. 

Lemma 8 Each free, shared vertex of P contributes one component to N*(P,V). 

Proof: Analogous to that of Lemma 3. D 

Lemma 9 If the edges of P are all trapped then ({P,V) = 1. 

Proof: Since all edges of P are trapped, P has at least one shared face, so that £(P,V) > 1. 
Suppose £(P, V) > 1 so that BS(P, V) is not connected. Now B(P) is topologically equivalent 
to a sphere and BS(P,V) C B{P). Therefore BS{P,V) not connected implies that Bb(P,V) = 
B{P) - B3(P;V) contains a tunnel, so that Bb{P, V) contains a closed curve c that is not 
reducible to a point in Bb(P,V). Suppose c passes through the interiors of exactly n faces, 
edges and/or vertices of P all of which are contained in Bb(P, V), say sl5 s2,..., sn where n 
is as small as possible. Evidently n > 1. [The interior of a face, edge, or vertex is simply 
connected; hence a simple closed curve entirely contained in the interior of a single face, 
edge, or vertex is always reducible to a point.] It is not hard to see that at least one of 
the Sj's must be either an edge or a vertex. [Indeed, the interiors of two faces are always 
disjoint, so that c cannot pass directly from the interior of one face to the interior of another.] 
Suppose Si is a vertex. Let e be any edge that contains st-. If interior (e) meets BS(P, V), by 
normality e must be contained in BS(P,V); hence s{ C BS(P,V), contradicting the fact that 
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interior Si C Bh(P,V). Hence interior(e) must be contained in Bb{P, V). Thus both the faces 
containing e are bare so that e cannot be trapped, contradiction. A similar contradiction 
can be derived if s2- is an edge. Hence Bb(P,V) cannot contain a closed curve that is not 
reducible to a point in Bb(P,V); thus Bb(P,V) cannot contain a tunnel. Therefore BS(P,V) 
is connected and hence ((P,V) < 1. n 

To conclude this section, we describe the general structure of an algorithm that computes 
the local topological parameters £(P,V), n(P,V),8(P,V) and simp!e(P,V). We treat the 
following cases, depending on the presence of shared faces in P. 

Case 1: All faces of P are shared. 
In this case all the edges and vertices are trapped and no more computation is needed. The 
local topological parameters have the following values: 

£(P,P) = 1,   v{P,V) = 0,   6(P,V) = 1,   simple(P,V) = 0. 

Case 2: Some faces of P are bare but all edges of V are trapped. 
In this case by Lemma 9 £(P,"P) = 1.  Since some faces are bare, by Theorem 5 we must 
have 6(P,V) = 0. As regards n(P,V), note that since every edge is trapped, two bare faces 
cannot intersect in an edge; hence no two bare faces are face-adjacent, so the number of face 
components in O(P) is equal to the number of bare faces. Hence by Theorem 5, n(P, V) is 
one less than the number of bare faces. Therefore, simple(P, V) = 1 iff the number of bare 
faces is 1, and simple (P,V) = 0 otherwise. 

Case 3: Some or all faces of P are bare and some edges of P are free. [Note that if all the 
faces are bare, all the edges must be free.] 
Here again, S(P, V) — 0.  £(P, V) is the number of components in the union of the shared 
faces and free shared edges of P, plus the number of free shared vertices of P (Theorem 5 and 
Lemma 8). As for n(P, V), by Theorem 3 it is one less than the number of face components 
in O(P). [Unfortunately, the computation of £(P,V) and rj(P,V) can be complex.] Finally, 
simple(P,V) = 1 if £(P,P) = 1 and rj(P,V) = 0, and simple(P,V) = 0 otherwise. 

3.4    An example: Partial tilings by cubes 

The computation of the measures of topological change is complicated even if V is a par- 
tial tiling derived from a regular tessellation. In this section we describe an algorithm for 
computing these measures in the case of a partial cubic tiling. 

In a cubic tessellation V, every cube P has twenty six a-neighbors, eighteen ^-neighbors 
and six 7-neighbors. An a-neighbor that is not a /3-neighbor will be called a vertex neighbor, 
a /3-neighbor that is not a 7-neighbor will be called an edge neighbor, and a 7-neighbor will be 
called a face neighbor. We denote the cubes in the neighborhood of P as shown in Figure 2. 

In this section we give an efficient algorithm that computes the local topological pa- 
rameters of P in a partial tiling V that is a subset of the cubic tessellation V. We first 
determine the configurations of the six face neighbors of P. [In the remainder of this section, 
the configuration of a cube specifies whether the cube is in V or in V — V. A cube will be 
referred to as black if it belongs to V; otherwise, it will be referred as white. For brevity, 
£, 7], 8 and simple will refer to ((P,V), ?/(P,"P')> W^') and simple(P,V), respectively] 
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There are sixty-four possible configurations of the six face neighbors; they can be grouped 
into the following ten cases depending upon the number and relative positions of the black 
face neighbors of P: 

Case 1: All six face neighbors are black. 
Only one face neighbor configuration belongs to this category. All edge and vertex neighbors 
are trapped.   No further computation is necessary and the values of the local topological 
parameters are £ = 1; n = 0; 8 = 1; simple = 0. 
Case 2: Five face neighbors are black. 
Six face neighbor configurations belong to this category.   All edge and vertex neighbors 
are trapped.   No further computation is necessary and the values of the local topological 
parameters are £ = 1; rj = 0; 8 = 0; simple = 1. 
Case 3:  Two pairs of opposite face neighbors are black. 
Three face neighbor configurations belong to this category. All edge and vertex neighbors 
are trapped.   No further computation is necessary and the values of the local topological 
parameters are £ = I; n = I; 8 = 0; simple = 0. 
Case 4: One pair of opposite and two non-opposite face neighbors are black. 
Twelve face neighbor configurations belong to this category. All vertex neighbors are trapped, 
but one edge neighbor is free. The values of the local topological parameters are as follows: 
£ = 1; n = 0 if the free edge neighbor is white and =1 otherwise; 8 = 0; simple = 1 if the 
free edge neighbor is white, and = 0 otherwise. 
Case 5: One pair of opposite face neighbors and one other face neighbor are black. 
Twelve face neighbor configurations belong to this category. All vertex neighbors are trapped, 
but two edge neighbors are free. The values of the local topological parameters are as follows: 
£ = 1; 77 = one less than the number of black and free edge neighbors; 8 = 0; simple = 1 if 
both the free edge neighbors are white, and = 0 otherwise. 
Case 6: Three non-opposite face neighbors are black. 
Eight face neighbor configurations belong to this category. Three edge neighbors are free, 
and when all of them are white, the vertex neighbor at their intersection is also free. We 
determine the configurations of the three free edge neighbors and determine the values of 
the local topological parameters as follows: 
Case 6.1: At least one of the free edge neighbors is black. 
In this case the vertex neighbor at the intersection of the free edge neighbors is trapped and 
we do not need to know its configuration. The values of the local topological parameters are 
as follows: £ = 1; 77 = one less than the number of black and free edge neighbors; 8 = 0; 
simple = 1 ifexactly one free edge neighbor is black, and = 0 otherwise. 
Case 6.2: All three free edge neighbors are white. 
Here the vertex neighbor at the intersection of the free edge neighbors is free and we need to 
know its configuration. The values of the local topological parameters are as follows: £ = 1 
if the free vertex neighbor is white, and = 2 otherwise; n = 0; 8 = 0; and simple = 1 if the 
free vertex neighbor is white, and = 0 otherwise. 
Case 7: Two opposite face neighbors are black. 
Three face neighbor configurations belong to this category.  Here, all vertex neighbors are 
trapped, but four edge neighbors are free. Depending on the configurations of the free edge 
neighbors, the values of the local topological parameters are determined as follows: 
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Case 7.1: At least one free edge neighbor is black. 
The values of the local topological parameters are: £ = 1; n = one less than the number of 
black free edge neighbors; 8 = 0; simple = 1 if exactly one free edge neighbor is black, and 

= 0 otherwise. 

Case 7.2: All four free edge neighbors are white. 
The values of the local topological parameters are: £ = 2; r} = 0; 8 = 0; and simple = 0. 

Case 8: Two non-opposite face neighbors are black. 
Twelve face neighbor configurations belong to this category. Here, five edge neighbors are 
free and depending upon their configurations, two more vertex neighbors may be free. To 
describe this case, let us consider an example (see Figure 2). Suppose face neighbors F$ 
and F5 are black and all other face neighbors are white. Among the free edge neighbors, 
the blackness of Ew leaves both vertex neighbors V4 and V8 [which could be free depending 
on the configurations of the free edge neighbors] trapped. Therefore, we first determine the 
configuration of Ew', the values of the local topological parameters are then determined as 
follows: 

Case 8.1: Edge neighbor Ew is black. 
Both vertex neighbors V4 and V8 are trapped, so we do not need to know the configuration 
of any vertex neighbor. However, the values of the local topological parameters depend on 
the configurations of the other four free edge neighbors E2, Ez, E5 and Es. At this stage, 
we use a lookup table to determine the values of £ and n. The lookup table contains entries 
for all possible configurations of E2, E3, E5 and E8; for each entry, it contains precalculated 
values of £, and rj (according to Theorem 5') and of simple (according to Theorem 4'); note 
that 8 is always zero. 

Case 8.2: Edge neighbor Ew is white. 
Here, the configuration of ÜJ10 is not enough to determine whether the two vertex neighbors 
V4 and Vs are trapped; this, and the values of the local topological parameters, also depend 
on the configurations of the other four free edge neighbors E2, E3, E5 and E8; At this stage, 
we use a lookup table. Again, this table contains entries for all possible configurations of 
E2, -B3, E5 and E$; and for each entry it contains precalculated values of (1) the number 
of a-components X in the set of black face neighbors Fz and F5 and black edge neighbors 
among E2, £3, E5 and E8; (2) 77; and (3) a two-bit number Y that indicates the free vertex 
neighbors among V4 and V8. At run time, a two-bit number Z is generated that indicates 
the configurations of V4 and V8. Finally, X plus the number of "1" bits in Y A Z determines 
the value of £; the value of 8 is always 0. Finally, simple = 1 when £ = 1 and 77 = 0; and = 
0 otherwise. 

Case 9: Only one face neighbor is black. 
Six face neighbor configurations belong to this category. Here, eight edge neighbors are 
free and depending upon their configurations, four more vertex neighbors may be free. To 
describe this case, let us consider an example (see Figure 2). Suppose face neighbor Fz is black 
and all other face neighbors are white. Edge neighbors Ei, E2, Ez, E4, E5, E8, Eg and Ew 
are free. Among them, we can find two sets {E5,E8} and {E9,Ew} such that, independent 
of the configuration of the other member of the same set, the blackness of one edge neighbor 
leaves two vertex neighbors [which could be free, depending on the configurations of the free 
edge neighbors] trapped. We randomly select the first set and determine the configurations 
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of £5 and E&. Depending on how many of them are black, the values of the local topological 
parameters are determined as follows: 

Case 9.1: Both E5 and Es are black. 
All four vertex neighbors Vi, V4, V5 and V$ are trapped and we do not need to know the 
configuration of any vertex neighbor. However, the values of the local topological parameters 
depend on the configurations of the other six free edge neighbors £1, £2, £3, £4, £9 and 
E10. At this stage, we use a lookup table to determine the values of £, 77 and simple; 6 is 
always 0. The form and use of the lookup table are exactly the same as in Case 8.1. 

Case 9.2: Exactly one of Es and Es is black. 
Suppose £5 is black so that the two vertex neighbors Vi and V4 are trapped. The configu- 
rations of £5 and Es are not enough to determine whether the other two vertex neighbors 
Vs and Vs are trapped; this, and the values of the local topological parameters, depend on 
the configurations of the other six free edge neighbors £1, E2, £3, £4, £9 and £10. At this 
stage, we use a lookup table to determine the values of £, 77 and simple; S is always 0. The 
form and use of the lookup table are exactly the same as in Case 8.2. 

Case 9.3: Neither Es nor Es is black. 
Here, the configurations of Es and £8 are not enough to determine whether the four vertex 
neighbors Vi, V4, V5 and Vs are trapped; this, and the values of the local topological param- 
eters, depend on the configuration of other six free edge neighbors £1, £2, £3, £4, £9 and 
£10. At this stage, we could use a lookup table; however, it should be noted that we can 
find two edge neighbors £9, £10 such that the blackness of one of them, independent of the 
configuration of the other, leaves two vertex neighbors trapped which were not yet known 
to be trapped. Before using a lookup table, we determine the configurations of these edge 
neighbors. Depending on how many of them are black, the values of the local topological 
parameters are determined as follows: 

Case 9.3.1: Both £9 and E\Q are black. 
All four vertex neighbors Vi, V4, V5 and Vs are trapped and we do not need to know the 
configuration of any vertex neighbor. However, the values of the local topological parameters 
depend on the configurations of the remaining four free edge neighbors £1, £2, £3 and £4. 
At this stage, we use a lookup table to determine the values of £, 77 and simple; 6 is always 
0. The form and use of the lookup table are exactly the same as in Case 8.1. 

Case 9.3.2: Exactly one of £9 and £10 is black. 
Suppose £9 is black so that the two vertex neighbors Vi and V5 are trapped. The configura- 
tions of £9 and £10 are not enough to determine whether the other two vertex neighbors V4 

and Vs are trapped; this, and the values of the local topological parameters, depend on the 
configurations of the remaining four free edge neighbors £1, £2, £3 and £4. At this stage, 
we use a lookup table to determine the values of £, 77 and simple; 6 is always 0. The form 
and use of the lookup table are exactly the same as in Case 8.2. 

Case 9.3.3: Neither £9 nor £10 is black. 
Here, the configuration of £9 and £10 is not enough to determine whether the four vertex 
neighbors Vi, V4, V5 and Vs are trapped; this, and the values of local topological parameters, 
depend on the configuration of the remaining four free edge neighbors £1, £2, £3 and £4. 
At this stage, we use a lookup table to determine the values of £, 77 and simple; 6 is always 
0. The form and use of the lookup table are exactly the same as in Case 8.2. 
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Case 10: No face neighbor is black. 
Only one face neighbor configuration belongs to this category. Here, all twelve edge neighbors 
are free, and depending upon their configurations, all eight vertex neighbors may be free. 
Obviously this is the most difficult case to handle. £From the twelve edge neighbors we can 
construct three sets {Ei, E2, Ez, E4), {E5,E6,E7,E8}, and {E9,Ei0,Eu, ^12}, such that, 
independent of the configurations of the other three members of the same set, the blackness 
of one edge neighbor in a set leaves two vertex neighbors trapped. We randomly select the 
first set {E1,E2, E3, E4), and determine their configurations. Depending on which of them 
are black, the values of the local topological parameters are determined as follows: 

Case 10.1: E1; E2, E3 and E4 are all black. 
All eight vertex neighbors are trapped and we do not need to know their configurations. 
However, the values of the local topological parameters depend on the configurations of the 
remaining eight free edge neighbors E5, E&, E7, E8, E9, Ew, En and E12. At this stage, we 
use a lookup table to determine the values of £, n and simple; 8 is always 0. The form and 
use of the lookup table are exactly the same as in Case 8.1. 

Case 10.2:  Three of E\, E2, Ez and E4 are black. 
Suppose Ei, E2 and E3 are black, so that the six vertex neighbors Vi, V2, V3, V4, V7 and Vg 
are trapped. The configurations of Ei, E2, E3 and E4 are not enough to determine whether 
the other two vertex neighbors V5 and V& are trapped; this, and the values of local topological 
parameters, depend on the configurations of the remaining eight free edge neighbors E5, E6, 
E7, E8, EQ, EW, En and E\2. At this stage, we use a lookup table to determine the values 
of £, 77 and simple; 8 is always 0. The form and use of the lookup table are exactly the same 
as in Case 8.2. 
Case 10.3: Two of E\, E2, Ez and E4, whose intersections with P are noncoplanar, are 
black. 
Suppose Ei and E3 are black so that the four vertex neighbors Vi, V2, V7 and V8 are trapped. 
The configurations of E\, E2, £3 and E4 are not enough to determine whether the other four 
vertex neighbors V3, V4, V5 and V& are trapped; this, and the values of the local topological 
parameters, depend on the configuration of the remaining eight free edge neighbors E5, E$, 
E7, E8, E9, Ew, En and Ei2. At this stage, we use a lookup table to determine the values 
of £, 77 and simple; 8 is always 0. The form and use of the lookup table are exactly the same 
as in Case 8.2. 
Case 10.4: Two of E\, E2, Ez and E4, whose intersections with P are coplanar, are black. 
Suppose Ei and E2 are black, so that the four vertex neighbors Vi, V2, V3 and V4 are trapped. 
The configurations of Ei, E2, E3 and E4 are not enough to determine whether the other four 
vertex neighbors V5, V6, V7 and V8 are trapped; this, and the values of the local topological 
parameters, depend on the configuration of the remaining eight free edge neighbors E5, E&, 
E7, E8, E9, Ew, En and E\2. At this stage, we could use a lookup table; however, it should 
be noted that we can find two edge neighbors E7 and E8 such that the blackness of one of 
them, independent of the configuration of the other, leaves two vertex neighbors trapped 
which are not yet known to be trapped. Before using a lookup table, we determine the 
configurations of these edge neighbors. Depending on how many of them are black, the 
values of the local topological parameters are determined as follows: 

Case 10.4.1: Both E7 and E8 are black. 
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Here, all eight vertex neighbors are trapped and we do not need to know their configurations. 
However, the values of the local topological parameters depend on the configurations of the 
remaining six free edge neighbors £5, £6, £9, £i0, Eu and £X2. At this stage, we use a 
lookup table to determine the values of £, 77 and simple; 8 is always 0. The form and use of 
the lookup table is exactly the same as in Case 8.1. 

Case 10.4.2: Exactly one of Er and Es is black. 
Suppose E7 is black, so that the six vertex neighbors Vi, V2, V3, V4, Vs and V7 are trapped. 
The configurations of £7 and Es are not enough to determine whether the other two vertex 
neighbors V5 and V8 are trapped; this, and the values of the local topological parameters, 
depend on the configurations of the remaining six free edge neighbors £5, £6, £9, £10, Eu 

and £12. At this stage, we use a lookup table to determine the values of £, 77 and simple; 8 
is always 0. The form and use of the lookup table are exactly the same as in Case 8.2. 

Case 10.4.3: Neither £7 nor Es is black. 
Here, the configurations of £7 and £8 are not enough to determine whether any of the four 
vertex neighbors V5, V$, V7 and Vs is trapped; this, and the values of the local topological 
parameters, depend on the configurations of the remaining six free edge neighbors £5, £6, 
£9? £i0) £11 and £12. At this stage, we use a lookup table to determine the values of £, 77 
and simple; 8 is always 0. The form and use of the lookup table are exactly the same as in 
Case 8.2. 

Case 10.5: Only one of E\, £2, £3 and £4 is black. 
Suppose £1 is black, so that the two vertex neighbors Vi and V2 are trapped. The config- 
urations of £1, £2, £3 and £4 are not enough to determine whether the other six vertex 
neighbors V3, V4, V5, 14, V7 and V& are trapped; this, and the values of the local topological 
parameters, depend on the configurations of the remaining eight free edge neighbors £5, £6, 
£7, Es, £9, £10, £11 and £12. At this stage, we can find two edge neighbors £7 and £8 such 
that the blackness of one of them, independent of the configuration of the other, makes two 
vertex neighbors trapped which were not yet known to be trapped. Before using a lookup 
table, we determine the configurations of these two edge neighbors. Depending on how many 
of them are black, the values of the local topological parameters are determined as follows: 

Case 10.5.1: Both £7 and £8 are black. 
Here, six vertex neighbors Vi, V2, V5, V6, V7 and Vs, are trapped and we do not need to 
know their configurations. The configurations of £7 and £8 are not enough to determine 
whether the other two vertex neighbors V3 and V4 are trapped; this, and the values of the 
local topological parameters, depend on the configurations of the remaining six free edge 
neighbors £5,- £6, £9, £10, £11 and £a2. At this stage, we use a lookup table to determine 
the values of £, 7? and simple; 8 is always 0. The form and use of the lookup table are exactly 
the same as in Case 8.2. 

Case 10.5.2: Exactly one of £7 and Es is black. 
Suppose £7 is black, so that the four vertex neighbors Vi, V2, V^ and V7 are trapped. The 
configurations of £7 and £8 are not enough to determine whether the other four vertex neigh- 
bors V3, V4, V5 and Vs are trapped; this, and the values of the local topological parameters, 
depend on the configurations of the remaining six free edge neighbors £5, £6, £9, £10, Eu 

and £12. At this stage, we use a lookup table to determine the values of £, 77 and simple; 8 
is always 0. The form and use of the lookup table are exactly the same as in Case 8.1. Note 
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that the blackness of E10 makes two vertex neighbors trapped which were not yet known to 
be trapped. This allows us to define another level of cases and improve the efficiency of the 
algorithm. Unfortunately, it also makes the description more complicated. 

Case 10.5.3: Neither E7 nor E8 is black. 
Here, the configurations of E7 and E8 are not enough to determine whether any of the 
six vertex neighbors V3, V4, V5, V6, V? and V8 is trapped; this, and the values of the local 
topological parameters, depend on the configurations of the remaining six free edge neighbors 
E5, E6, EQ, E10, En and Ei2. At this stage, we use a lookup table to determine the values 
of £, 7/ and simple; 6 is always 0. The form and use of the lookup table are exactly the same 
as in Case 8.2. 
Case 10.6: None of Ex, E2, E3 and E4 is black. 
Here, the configurations of Ex, E2, E3, E4 are not enough to determine whether any of the 
eight vertex neighbors is trapped; this, and the values of the local topological parameters, 
depend on the configurations of the remaining eight free edge neighbors E5, E6, E7, E8, E9, 
Eio, En and Ex2. We determine the configurations of E5, E6, E7 and E8.  Depending on 
which of them are black, the values of the local topological parameters are determined as 
follows: 

Case 10.6.1: All of E5, E&, E7 and E8 are black. 
Here, all eight vertex neighbors are trapped and we do not need to know their configurations. 
The values of the local topological parameters depend on the configurations of the remaining 
four free edge neighbors E9, Ew, En and Eu.   At this stage, we use a lookup table to 
determine the values of £, 77 and simple; 8 is always 0. The form and use of the lookup table 
are exactly the same as in Case 8.1. 
Case 10.6.2: Three of E5} E6, E7 and E8 are black. 
Suppose E5, E6 and E7 are black, so that the six vertex neighbors Vi, V2, V3, V4, V6 and 
V7 are trapped.   The configurations of E5, E6, E7 and E8 are not enough to determine 
whether the other two vertex neighbors V5 and V8 are trapped; this, and the values of the 
local topological parameters, depend on the configurations of the remaining four free edge 
neighbors E9, Eio, En and E12. At this stage, we use a lookup table to determine the values 
of £, rj and simple; 8 is always 0. The form and use of the lookup table are exactly the same 
as in Case 8.2. 
Case 10.6.3:  Two of E5, E6, E7 and E8 whose intersections with P are noncoplanar are 
black. 
Suppose E5 and E7 are black, so that the four vertex neighbors Vx, V4, V6 and V7 are trapped. 
The configurations of E5, Ee, E7 and E8 are not enough to determine whether the other four 
vertex neighbors V2, V3, V5 and V8 are trapped; this, and the values of the local topological 
parameters, depend on the configurations of the remaining four free edge neighbors Eg, Ew, 
Eu and EX2. At this stage, we use a lookup table to determine the values of £, r\ and simple; 
8 is always 0. The form and use of the lookup table are exactly the same as in Case 8.2. 

Case 10.6.4: Two of E5, E6} E7 and E8 whose intersections with P are coplanar are black. 
Suppose E5 and E6 are black, so that the four vertex neighbors Vi, V2, V3 and V4 are trapped. 
The configurations of E5, Ee, E7 and E8 are not enough to determine whether the other four 
vertex neighbors V5, V^, V7 and V8 are trapped; this, and the values of the local topological 
parameters, depend on the configurations of the remaining four free edge neighbors £9, Ew, 
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En and £12 At this stage, we use a lookup table to determine the values of £, n and simple; 
8 is always 0. The form and use of the lookup table are exactly the same as in Case 8.2. 

Case 10.6.5: Exactly one of E5, E$, £7 and E& is black. 
Suppose E5 is black, so that the two vertex neighbors \\ and V4 axe trapped. The config- 
urations of E5, Ee, E7 and Es are not enough to determine whether the other six vertex 
neighbors V2, V3, V5, V^, V7 and Vs are trapped; this, and the values of the local topological 
parameters, depend on the configurations of the remaining four free edge neighbors E9, Ei0, 
En and £12. At this stage, we use a lookup table to determine the values of £, 77 and simple; 
8 is always 0. The form and use of the lookup table are exactly the same as in Case 8.2. 

Case 10.6.6: None of E5, E&, E7 and E8 is black. 
Here, the configurations of E$, E6, Er and Es are not enough to determine whether any of 
the eight vertex neighbors is trapped; this, and the values of the local topological parameters, 
depend on the configurations of the remaining four free edge neighbors £9, E10, En and £12. 
At this stage, we use a lookup table to determine the values of £, 77 and simple; 8 is always 
0. The form and use of the lookup table are exactly the same as in Case 8.2. 

4    Concluding remarks 

We have seen that in two dimensions, the measures of topological change can be computed 
efficiently even for arbitrary SN paxtial tilings; but in three dimensions, their computation 
can be complex. It would be of interest to give algorithms analogous to that in Section 3.4 
for partial tilings derived from other tessellations [2,3], which have some advantages for 
representing three-dimensional digital images. 
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(a) (b) 

Figure 1: The configurations of the vertices and edges of triangle P are the same in (a) and 
(b), but N*(P,V) has only one component in (a), while it has two components in (b). Note 
that this set of polygons is not SN. 

Vi   E5 V4 

Eg     Fi Eio 
V5   Es Vs 

(a) 

E\   F2 E2 
F5   P F6 

E4   F4 E$ 

(b) 

V2    Ee    V3 
E\i   F3   En 
Ve    E7    V7 

Figure 2: Notation for the cubes in the neighborhood of P. (a) is the layer of cubes above 
P, (b) is the layer containing P, and (c) is the layer below P. The F's are face neighbors, 
the üTs are edge neighbors, and the Vs are vertex neighbors. 
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